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Abstract 

This paper presents a structure-from-motion system which delivers dense structure 
information from a sequence of dense optical flows. Most traditional feature-based 
approaches cannot be extended to compute dense structure due to impractical com- 
putational complexity. We demonstrate that by decomposing uncertainty information 
into independent and correlated parts we can decrease these complexities from 0(N2) 
to 0(N), where N is the number of pixels in the images. We also show that this dense 
structure-from-motion system requires only local optical flows, i.e. image matchings 
between two adjacent frames, instead of the tracking of features over a long sequence 
of frames. 

Ill 



1    Introduction 
Structure from motion has been one of the most active areas in computer vision 
during the past decade. The idea is to recover structure or shape information from 
a sequence of images taken under unknown relative motions between the camera and 
the scene. Most approaches proposed in the literature can be classified according to 
whether they are based upon features or optical flows. 

Feature-based methods compute the relative structure information among features 
by analyzing their 2D motion in images. Examples of such systems are reported by 
Tsai k Huang [19], Tomasi k Kanade [18], Broida et al [5] and Azarbayejani k 
Pentland [3] . Because the whole analysis is limited to features which usually number 
not more than hundreds, the results from those systems yield very sparse shape 
information. While stripping a full-resolution image to a handful of features may 
greatly simplify the algorithm and the computation, most of information contained 
in the image is lost. In many applications such as model acquisition, inspection and 
navigation, dense structural information is more desirable. 

Traditional flow-based methods, such as reported by Bruss k Horn [6], Weng et al 
[20], Heeger k Jepson [11], Adiv [1], have concentrated on either solving the problem 
of recovering motion and structure from a single optical flow field or using very low 
resolution optical flows. As far as we know, little has been done to achieve a dense 
structure-from-motion system except Heel's work in [13]. Unfortunately, as pointed 
out in [18] that whether the proposed iterative algorithm in [18] converges is still an 
open question. Overall, the difficulties of such a system arise from two main factors: 

• Computation. While a feature-based method can easily afford an 0{N2) or 
0(N3) algorithm, where N is the number of features, a flow-based method cannot 
even afford an 0(N2) algorithm, where N is the number of pixels. 

• Accumulation. While a feature-based method can accumulate structural infor- 
mation for features because they are tracked across many frames, optical flows 
usually cannot be used to track pixels because their measurements are uncertain. 
In other words, while a feature-based approach quantify the image information 
as either totally unreliable or very reliable, a flow-based approach has to use 
a spectrum of reliability. Therefore, it is impossible to accumulate structural 
information by tracking all pixels across many frames in a flow-based method. 

This paper shows our attempt at overcoming these difficulties. We demonstrate a 
system which incrementally accumulates dense structural information from a sequence 
of optical flows. The system has the following features: 

• The system is based on EKF (extended Kaiman filtering) as proposed in [5]. We 
will show in our experiment that the nonlinearity problem is actually not very 
serious even when the initial data are very crude. 

• The formulation of the structure from motion uses separate independent and 
correlated structure uncertainty estimations. By employing the separation and 

1 



Ay 

Image Plane 

Figure 1: The Camera Coordinate 

other mathematical techniques such as Sherman-Morrison-Woodbury inversion 
and principal component analysis, we can achieve an 0(N) numerical algorithm 

to compute Kaiman filtering. 

The underlying motion of the camera can be discontinuous. Unlike many EKF- 
based approaches, ours computes the initial motion of every frame independently. 

We propose the concept of "Dynamic Motion Parameterization", which means 
that a different parameterization of the six motion parameters is used at every 
frame. Such a dynamic parameterization enables that the optical flow is equally 
sensitive to each of them, and therefore, stabilizes numerical computations. 

2     System Overview 

2.1     Coordinates and Motion 

The system is based on the camera coordinate system OXYZ shown in Figure 1, in 
which the origin O is the center of projection, the Z axis coincides with the optical 
axis, and the image plane is located at Z = 1. 

If the relative motion of the camera with respect to the scene is composed of a 
translation velocity (U, V, W) and a rotation velocity (A, B, C), we have the following 
relation between the flow velocity (vx,vy) and the depth Z of pixel location (x,y) 

from [14]: 

~~U + xW + Axy-B(x* + l) + Cy, 

Vy = 

Z 
-V + yW 

Z 
- Bxy + A{y2 + 1) - C x. 

(1) 

(2) 

If we designate the camera motion parameterization as M0 = (U, V, W, A, B, C)   and 
the flow velocity as v = (vx,vy)

T, the above equation can be expressed as 

$=v(x,y,Z,M0), (3) 



or its inverse 
Z = Z{v,x,y,M0). (4) 

2.2    Block Diagram of the System 

Functionally, the system is decomposed into three major blocks as in Figure 2. For the 
sake of simplicity, we will refer to an optical flow and its uncertainty together as optical 
flow information, the structure and its uncertainty together as structural information, 
and the motion and its uncertainty together as motion information. We also designate 
the camera coordinate system before current motion as a priori coordinate system and 
the camera coordinate system after current motion as posteriori coordinate system. 
The computations within each block are as follows. 

• Initial Motion Estimate: This block uses the current optical flow information 
and predicted structure information to compute an initial estimate of motion 
information for the current frame. Since the motion can be discontinuous, the 
current motion is independent of the previous motions. Once the motion infor- 
mation is estimated, we can re-parameterize the motion parameters such that 
they are equally sensitive to flow variations. 

• EKF-based Update: This block uses the current flow information, predicted struc- 
ture information and initial motion information to compute posteriori structural 
and motion information. The structure is represented with respect to the a priori 

coordinate system. 

Interpolation and Transformation: This block converts the structural informa- 
tion from the a priori coordinate system into the posteriori coordinate system 
by interpolation, spatial rotations and translations. 

3     EKF-based Uncertainty Update 

The Extended Kaiman Filtering approach has been applied successfully in many fields 
to combine uncertainty information. In this section, we will briefly go through the 
general EKF framework as in [8] (Chapter 6), and then apply this framework to our 

nonlinear problem. 
The measurements z and the state vector x, which is what we need to estimate, 

are related according to: 
z = h(x) + n, (5) 

where n is a zero-mean measurement error whose covariance is R. If the a priori 
estimates of the state vector and its covariance are x_ and P_ respectively, the 
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Figure 2: Block Diagram of The System 

posteriori estimates of the state vector and its covariance after combining the new 
measurements are x+ and P+: 

x+    =   x-+K.(z —h(x-)), 

P+   =   (I-KH)P_, 

where K is the Kaiman gain 

K = P_HT(HP_HT + R)\ 

and H is the Jacobian matrix of the measurement equations, i.e. 

dh(x) 
H = 

dx 

(6) 

(7) 

(8) 

(9) 

In the problem of dense structure from optical flows, the state vector is an (N + 
—* 

6) vector composed of six motion parameters M and depth at every pixel Zi,i = 
1,2, ...,iV, where N is the number of pixels. We express the state vector as 

x = (MT,ZuZ2,...,ZNf (10) 

Note that the motion parameters M have a linear relation with the original motion 
parameters M0 in Eq. 3 as we will show later, i.e. 

M0 = TM, (11) 

where T is a 6 x 6 non-singular matrix. 
The measurements are stored in a 2iV vector which represents flow velocities at 

every pixel, i.e. 
f=(Cif,...,4f, (12) 



where z;, i = 1, 2, ...,7V is the measured flow velocity pari at each pixel. And the error 
covariance of the measurement vector z is a 27V x 27V diagonal block matrix 

R 

/ri 

V 

r2 

\ 

YN I 

(13) 

in which r;,z = 1,2, ...,7V is the 2x2 error covariance matrix of the flow velocity at 
each pixel. 

Using Eq. 3 and Eq. 11, the measurement equations can be expressed as 

(   v(xuyuZ1,TM)   \ 
v{x2,y2,Z2,TM) 

\ v(xN,yN,ZN,TM) J 

( vi  \ 
v2 

\ VN  ) 

(14) 

in which X{, yi, i = 1,2,..., TV and T are known. The Jacobian matrix of the measure- 
ment equations is 

/   ML 
3-0 

H dM 

dtif 

dZ2 

\ 

dvrj     . 
dZN   I 

= (A   S), (15) 

in which A is a 2iV x 6 matrix and S is an N x N diagonal block matrix with each 
block a 2 x 1 matrix. 

Now that we have formulated the problem of recovering dense structure from op- 
tical flows in the EKF framework, it seems like all we need to do is to plug those 
formulas into Eq. 6 and Eq. 7 so that the dense structure information can be recur- 
sively estimated. And that is exactly what people did in feature-based methods such 
as [5] and [3]. Unfortunately, if we apply this scheme directly to the dense structure 
recovery problem, the computation and memory requirements are insurmountable. 
As pointed out in [17], the uncertainties of the depth values Z;, i = 1,2, ...,N are cor- 
related due to uncertain motion. Thus the covariance matrix P is a full N xN matrix. 
And the computation of the Kaiman gain in Eq. 8 which contains an inverse of a full 
27V x 27V matrix requires at least 0(7V2) computation and memory. Considering an 
ordinary 256 x 256 image, even a symmetric 27V x 27V (here TV = 256 x 256 = 65, 536) 
matrix in single precision will require more than 30 Gigabytes of memory! Even if we 
could represent such a matrix, it is impractical to consider inverting it on ordinary 
workstations. 



3.1     Decomposition of Independent and Correlated Uncer- 
tainty 

Fortunately, we can take advantage of this specific problem to overcome these difficul- 
ties. As we mentioned before, the uncertainties of the depth values are correlated due 
to uncertain motion. Because there are only six motion parameters, the correlated 
uncertainty of the depth values caused by a single uncertain motion is an N x N 

matrix with rank of only six! 
Because the rank of the correlated uncertainty is much smaller than N, the co- 

variance matrix P can be decomposed into the following format: 

p _ ( Cm C?     TA, (16) ^-{ Cp   (CS + UVT) J' ^    ' 

where Cm is a 6 x 6 matrix representing the covariance of the motion parameters, Cp 

is an iV x 6 matrix representing the correlation between the motion and the structure, 
Cs is an N x N diagonal matrix representing the independent uncertainty of the depth 
value of each pixel, and U and V are both N xk matrices whose outer product is a 
rank k matrix representing the correlated uncertainty of the depth values. Therefore, 
storing the matrix P sparsely will only require 0(N) memory if A; is a constant. 

Now that we can represent the covariance matrix P, we will show that in the 
EKF framework, once P_ can be represented in the format of Eq. 16, P+ can also 
be represented in the same format. In fact, because R and H are special matrices, 
the covariance matrix P can always be represented sparsely as in Eq. 16 throughout 
the whole optical flow sequence. We never need to explicitly represent P as an 

(N + 6) x (N + 6) matrix! 
In our system, we assume that the motion is discontinuous, i.e. the current motion 

is uncorrelated to previous motions. Under this assumption, a priori correlation 
between the structure and the current motion Cp in Eq. 16 is zero. For simplicity, 
we will assume Cp is zero in the following sections, though in situations where this 
assumption is not true we also have similar results. If P_ is represented as in Eq. 16, 

after some manipulation, we have 

/ 

HP_HT + R   =   (SCSS
T + R) + ACm   SU   | [      yTgx 

V 
.    =   d+UjVf, (17) 

where Ci = (SCSS
T + R) is an N x N diagonal block matrix with each block a 2 x 2 

matrix, Ui and Vx are 2N x (k + 6) matrices as 

Ui =      ACm   SU   I ,Vi =      A   SV   I . (18) 



By applying the Sherman-Morrison-Woodbury formula as in [9] and Appendix A, 
we can invert the above matrix 

(HP_HT + R)-1 = (d + UiVfr1 = C2 + U2V^, (19) 

where C2 is also an N x N diagonal block matrix with each block a 2 x 2 matrix, U2 

and Vi are 2N x (k + 6) matrices. 
Substituting Eq. 19 back into Eq. 8, we obtain the Kaiman gain 

K=(    C-M?,VJ    )' (20) 

where Km is a 6 x 2JV matrix 

Km = CmATC2 + CmATU2V2
T, (21) 

C3 is an N x N diagonal block matrix with each block a 1 x 2 matrix 

C3 = CSS
TC2, (22) 

U3 is a (N + 6) x (3k + 6) matrix 

\ 
u3=    u  CSS

JU2  u (23) 

/ 

and V3 is a 2N x (3k + 6) matrix 

\ 
V3 =     C2SV   V2   V2(U^SV) 

Finally, the updated covariance P+ is 

(24) 

/ 

p+ - ( cPl (c4 + u4vj) ) ' (25) 

where Cmp is a 6 x 6 posteriori covariance matrix of the motion parameters 

Cmp = Cm — KmACm, (^oj 

Cpp is an A'' x 6 posteriori uncertainty correlation between the structure and current 
motion1 

Cpp = -(Cs + VVT)STKT
m, (27) 

xNote that we assumed a priori correlation between structure and motion Cp is zero.   But the 
posteriori correlation Cpp is not zero. 



C4 is an TV x N diagonal matrix representing the independent uncertainty in the 
structure estimation 

C4 — Cs — CßSCs (28) 

and U4 and V4 are N x (Qk + 6) matrices, whose outer product represents the cor- 
related uncertainty in the structure information 

U4 

V4   = 

If we are careful about the ordering of matrix multiplications in the above equa- 
tions, we then have an algorithm which updates the state vector and its covariance 
using O(kN) computation and memory. Unfortunately, k increases linearly after each 
frame, which makes the above algorithm O(MN) where M is the number of frames. 
Though M is usually much smaller than the number of pixels JV, it is still impractical 
for long image sequences. In next section, we introduce weighted principal component 
analysis to keep k constant, and therefore achieve an O(N) algorithm. 

/ \ 

U   -U3   -C3SU   -U3VJSU (29) 

V                                        ) 
(                     \ 

V   CsS
rV3   V   V • (30) 

\                    / 

3.2    Weighted Principal Component Analysis 

First of all, let us consider the eigenvalues and eigenvectors of the correlated uncer- 
tainty matrix U4Vj. In general case, there are / = Qk + 6 non-zero eigenvalues and 
corresponding eigenvectors, which can be computed easily as in Appendix B. Because 
the outer product represents covariance which must be symmetric, it can be expressed 

as 
/ 

U4V^ = 

\ 

ei   e2 e/ 

V / 

/Ax 

V 

\ 

h) 

( 

\ 

-T 

7fr 
(31) 

/ 

where et-, i - 1,2,..., I are N x 1 eigenvectors, and A,-, i = 1,2,..., I are the corre- 
sponding eigenvalues ordered by magnitude such that Ai is the largest eigenvalue. 

Every eigenvector is an N x 1 vector, which represents an eigen-image. This 
eigen-image illustrates the pattern of the depth uncertainty, and the corresponding 
eigenvalue represents the magnitude of this depth uncertainty. For example, if the 
eigen-image is an image with same value at every pixel, the depth uncertainty repre- 
sented by this eigen-image is that depth values of all pixels can change but only by the 
same amount.  In other words, changes of depth values allowed by this eigen-image 



have to be in the pattern specified by the eigen-image: 

/ Zi \ 
Z2 

= ce. (32) 

V zN ) 
where c is a scalar constant and e is the eigen-image. The meaning of the eigenvalue 
is similar to that of a in a Gaussian distribution, which represents the magnitude of 

the uncertainty. 
Since the eigenvalues in Eq. 31 are in descending order, and we can truncate the 

eigenvalues after first k largest ones, i.e. 

/ 

U4V^ 

\ 

ei   e2 ejt 

V / 

/Ai 

V 

\ 

Afc / V 

/ TfT \ 

I 

(33) 

Thus U4 and V4 can both be reduced to N x k matrices. The iterations of EKF 
updating illustrated in the previous section can be carried out in 0(N) for every 

frame no matter how long the sequence is. 
The underlying assumption of truncating small eigenvalues in Eq. 33 is that the 

uncertainty implied by those eigenvalues/eigen-images is negligible compared to the 
independent uncertainty C4. And the reason for keeping large eigenvalues is that we 
assume the uncertainties implied by these large eigenvalues and their corresponding 
eigenvectors are at least comparable to the independent uncertainty C4. But since 
the independent uncertainties of pixels are not uniform, truncating by the magni- 
tudes of eigenvalues may not make much sense at all because even though a rela- 
tively large eigenvalue may imply a large uncertainty in a certain area in the eigen- 
image, if the independent uncertainty happens to be even larger in the same area, 
this eigenvalue/eigen-image becomes less significant. 

Based on the above speculation, we propose a weighted principal component anal- 
ysis, i.e. the correlated uncertainty is weighted by independent uncertainty before 
decomposition as in Eq. 31. Since the independent uncertainty C4 is a diagonal 
matrix, and its diagonal elements have to be positive, we can decompose it as 

/ ci 
c2 

V 
/ \/cl 

\ 

CN  J 

/ N/CT 

CiV  /    V 

= <w (34) 

CN  I 



Original Image Gamma = 4.0 

Figure 3: An Image Sequence of A Toy House 

Therefore, the overall uncertainty can be represented as 

C4 + U4Vf = Q (I + Q-1U4(Q-1V4)
T) Q T (35) 

In other words, we have weighted the correlated uncertainty U4 and V4 by the inde- 
pendent uncertainty Q_1. We then truncate small eigenvalues of Q"1U4(Q-1V4)

r. 
Figure 3 (Original Image) shows a toy house in front of the camera. The uncer- 

tainties of flow velocity in the dark background are very large comparing to those 
of the house area. There are small intensity variations in the background, which are 
visible after Gamma correction as in Figure 3. Figure 4 shows the six most significant 
eigenvalues/eigen-images of the correlated structure uncertainty using the direct de- 
composition method from Eq. 33. The eigen-images are shown by linearly quantizing 
0 to grey-level 125, -0.025 or smaller values to grey-level 0 and 0.025 or larger val- 
ues to grey-level 255. As indicated by either high or low grey-levels, the uncertainty 
information captured in the 2nd, 3rd, 4th, 5th and 6th eigen-images/eigenvalues is 
mainly in the background area. On the other hand, Figure 5 shows the first six 
weighted principal components. Obviously, the weighted principal components carry 
much more useful structural uncertainty information. 

Since eigen-images represent orthogonal patterns of possible change or deformation 
of the depth map in Eq. 32, they also lend themselves for intuitive interpretations. 
For example, across the house in the second eigen-image in Figure 5 there is one 
skew line of grey-level 125, whose left side is bright and right side is dark. Referring 
to Eq. 32, we can see that this pattern represents a possible rotation around the 
skew line. Other eigen-images can be similarly interpreted though the patterns may 
be more complicated. In the context of structure from motion, we believe that the 
intrinsic ambiguity [2] of translation versus rotation of camera is represented and 
carried through recursive estimations by uncertainty patterns like these as we will 

show in experiments. 

10 
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4    Initial Motion Estimation 

Unlike many other approaches such as [3], we do not assume continuous motion. In 
other words, we assume that the motion at the current frame is totally unrelated 
to the motion in the previous frame because we believe that the continuous motion 
assumption is unrealistic in many cases such as navigating on real roads, hand-held 
video recording, and so on. Thus, in order to apply the EKF framework to our prob- 
lem, we need to estimate an initial motion and its a priori covariance for each frame. 
Theoretically we don't need a priori covariance because it should be infinitely large. 
But in practice we need a finite one for numerical stability and re-parameterization. 

First of all, given a priori structure Z and flow velocity v, we can estimate the 
initial motion M0 from Eq. 3 by a linear least squares fitting, e.g. minimizing 

£{% - v(xh yh Z,-, Mo))V(t* - v(Xl, yi: Zu M0)), (36) 

where r,- is the covariance of the flow velocity V{. 
But we cannot use the above minimization to estimate the covariance of M0 because 

we didn't consider the uncertainties of structure Z. Designating the a priori depth 
map as Za and the depth computed from current motion M0 and v by Eq. 4 as 2C, 
we have the following objective function to be minimized 

J2(vi - v(xu Vi, Zh McOfr-1^ - v(Xi, yh Zh M0))   + 

(Za - Zcf(C + Cd + VVT)-\Za - Zc\ (37) 

where Za and Zc are N x 1 vectors, C + UVT is the structural uncertainty of Za, and 
Cd is the depth uncertainty caused by current flow uncertainty given M0. Because 
the flow uncertainties of different pixels are independent, Cd is an N x iV diagonal 

matrix. 
If we ignore the dependence of Cd on M0, the minimization of Eq. 37 can be 

achieved using Levenberg-Marquardt method [16]. In fact, this simplification is jus- 

tifiable because Cd is usually insensitive to M0. Once the objective function is mini- 
mized, the curvature at the minimal value can be used to compute the covariance of 

Mo- 

4.1     Dynamic Motion Parameterization 

Motion is traditionally parameterized using three translation parameters and three 
rotation parameters as in Eq. 1 and Eq. 2. As pointed out in [3], if the camera has 
a long focal length, the optical flow is much more sensitive to translations in the XY 
plane to translations in the Z direction. Ideally we want the optical flow to be equally 
sensitive to all six motion parameters because otherwise the the covariance of motion 

12 



Cm in EQ. 16 could be numerically singular or near singular and therefore ruin the 
numerical computation of EKF. 

We introduce the concept of "dynamic motion parameterization" to equalize sen- 
sitivities of motion parameters. There are two sources of sensitivity difference: 

1. Static Sensitivity Difference is caused by the camera configuration. For example, 
if the camera has a narrow field of view, the optical flow is usually much more 
sensitive to rotation than translation. 

2. Dynamic Sensitivity Difference is caused by current flow or depth estimate in- 
stead of the camera. For example, if the optical flow has uncertainty much larger 
in one direction than others, the optical flow is less sensitive to the motion which 
caused optical flow in that direction. 

If we designate the covariance of M0 computed from minimizing the objective 
function of Eq. 37 as Cmt, we can normalize sensitivities by using a new set of motion 
parameters 

M = T-'Mo, (38) 

where 
Cmt = TTT. (39) 

—* 
It can be easily verified that the covariance of the new motion vector M is the unit 

matrix I. 
Note that we cannot use the unit matrix as Cm in Eq. 16. Theoretically the a 

priori motion covariance Cm should be infinitely large due to uncorrelated motion. In 
estimating covariance of the motion in this section, we have already used the optical 
flow information of the current frame. Therefore, it is actually posteriori motion 
covariance! Ideally, we want the a priori covariances to be small enough to avoid 
numerical problems, and yet large enough to not contain any information about the 
current frame. In practice, we use 10001 as a priori motion covariance Cm because it 
avoids the numerical problem of an infinitely large covariance and is also large enough 
(compared to posteriori covariance I) to be uninformative. 

5     Interpolation and Forward Transformation 

We represent the 3D shape by a depth map in the current camera coordinate system 
as in Figure 1. Therefore, we need to transform the previous depth map into the 
current camera coordinate system and resample the depth map according to the 
current sensor grid. There are two new problems which were previously unsolved: 

• Though the depth map and its independent uncertainty can be easily interpo- 
lated as in [15, 12], the interpolation of correlated uncertainty is a new problem. 

• Most existing recursive structure-from-motion systems ignore the fact that mo- 
tion and structure are actually correlated as Cpp in Eq. 25 when they rotate or 
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Figure 6: Vector Field as Correlated Uncertainty 

translate the structure according to the motion. Though the exact effects of this 
simplification are still unknown, our system will perform a correlated translation 

and rotation. 

As explained in Appendix B, since a correlated uncertainty is always a positive 
definite symmetric outer product, it can be represented as 

UVT = BBT, (40) 

where B is an N x k matrix just like U. In other words, every row of B is a vector of 
length k that can be regarded as an attribute of the corresponding pixel. Therefore 
we can represent the correlated uncertainty as a vector field as in Figure 6. Further 
more, the correlated uncertainty between any two locations is the dot product of 
the vectors at the two locations. Interpolating the correlated uncertainty is done by 

interpolating this vector field. 
Since the optical flow establishes the correspondence between two adjacent frames, 

we can interpolate, resample and transform the depth map represented in the pre- 
vious camera coordinate such that we have the depth and uncertainty information 
for grid positions in the current frame. We designate this process as the "forward 
transform". For every pixel position in the current frame, suppose its correspondence 
in the previous frame is at location (x,-,j/,-) in the image plane, and has depth Zi in 
the previous camera coordinate, we can compute the depth Zf in the current camera 
coordinate using the motion parameters, e.g. 

Zf = f{xi,yuZi,M0) = f(xi,yi,ZuTM), (41) 

where / represents 3D rotation and translation function. The 3D transformation 

matrix can be found in [7] (page 52). 
To compute the structural uncertainty in the new camera coordinate, we take the 

derivative of Eq. 41 

dz: +   _ —    T:—dZ; H — 
dZi      ^ dM 

=   aidZi + bfdM, 

dM 

(42) 
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where % is a vector of length six. Thus we have the covariance between two arbitrary- 
points as 

E[dZfdZf]   =   aittjEidZidZj] + aj% E[dZidÄfr\ + 

a$E[dZjdM] + bjE[dMdMT]bj. 

From Eq. 25, we know that 

Cmp   =   E[dMdMT], 

f E\dZxdMf \ 
E[dZ2dM]T 

Jvv 

(43) 

(44) 

(45) 

V E[dZNdM]T ) 

Therefore, we have the structural uncertainty after the forward transform as 

where 

where 

E 

( dZt \ j dZ+ \ 
dZ$ dZ$ 

\dZ%)\ dZ+ J 

T-\ 

C+ + U+(V+)T, 

I a\ 

C4, 

at J 

U+ 

V+   = 

f aiuf aipf    b[ CmpbJ ^ 

a2u^ CI2P2     H Cmp6^ 

\ aj^uN awpN   bN CmpbN j 
(  a\v{ 6f    aipf b\  ^ 

a2v
A

2 b\     a2p2 b2 

bl .XT     UT     „..&     p \ aNv^N   b*N   aNp^N   b*N ) 

U4   = 

( % \ 
->T 
U2 

KuT
Nj 

(46) 

(47) 

(48) 

(49) 

(50) 
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/ «f \ 
v4 

dr 
(51) 

Jvv 

\4i / 

\PN / 

(52) 

in which u,-'s and u;'s are vectors of length k and $k's are of length six. Since U+ and 
V+ are now N x (k + 18) matrices, they may also be reduced to N x fc by weighted 

principal component analysis. 

6    Implementation Issues and Experiments 

6.1     Implementation Issues 

We implemented our system using single precision matrices. As always in manipulat- 
ing large matrices, the numerical stability has to be carefully watched while carrying 
out those computations. Potentially there are following sources of unstable compu- 

tations: 

1. Matrix Multiplication: When computing the inner product of two large matrix 
VTU, where both U and V are N x k {k « N), we have to carry those 
additions in double precision due to large N. For example, if the image is 
256 x 256, we can easily lose four significant digits during multiplications, which 
could be devastating if they are carried out in only single precision. 

2. Ill-conditioned Matrix: There is always a danger when one of the matrices in 
the computation is singular or near singular. In the worst case, we may lose all 
significant digits. Thus it is extremely helpful to avoid any ill-conditioned matrix 
if possible. In our system, we pay special attention to the following matrices: 

• Flow Uncertainty: The estimated optical flow uncertainty r;'s in Eq. 13. 

• Motion Uncertainty: We used dynamic motion parameterization to prevent 
the motion covariance matrix from being ill-conditioned. 

• Kaiman Gain: In computing the Kaiman gain as in Eq. 8, it is numeri- 
cally devastating if HP_HT + R is ill-conditioned. HP_HT represents the 
projection of the uncertainty of motion and structure to the uncertainty of 
optical flow. In order for HP_HT + R to be well conditioned, we need to 
make sure that the projected uncertainty of optical flow is not significantly 
larger (> 105) than the estimated uncertainty R. That is the reason we 
choose 10001 as the a priori motion uncertainty. 
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3. Sherman-Morrison-Woodbury Inversion: Though Sherman-Morrison-Woodbury 
inversion significantly reduces the amount of computation and memory required 
compared to the traditional Gaussian elimination ([16]), it has the disadvantage 
of being more fragile numerically ([10, 4], Appendix A). From our experience, 
the eigenvalues of UVT have to be at most 104 of the eigenvalues of C to allow 
a stable numerical inversion of C + UVT using Sherman-Morrison-Woodbury 

formula. 

Another common problem of a structure from motion system is the handling of 
the disappearance and reappearance of parts of the scene due to relative movement 
between the camera and the scene. Our system had no problem dealing with new 
parts, which are simply assigned a preset large independent uncertainty and a zero 
correlated uncertainty. But the depth information of disappearing parts is discarded. 
In the future, we would like to maintain a global shape module such that the structure 
information of disappeared parts could be stored and retrieved. 

6.2    Experiments 

We tested our system on real image sequences taken by a Sony XC-75 video cam- 
era. The relative camera movements in all the sequences involve both rotation and 
translation. We digitized images in two ways. One is to digitize by matrox board 
while shooting the sequence. In order to digitize while taking images, we mount the 
camera on a computer-controlled 6 DOF platform in Calibrated Imaging Lab, and 
stop for every frame. Another way is to record the sequence on Umatic SP video tape, 
and digitize the tape frame by frame. Unfortunately, the digitizing device we have 
can only digitize one of two fields in every frame, and the videotape also introduces 
additional noise in the images. We will demonstrate the performance of our system 
on image sequences digitized both ways. All images in our experiments are 480 x 512. 

6.2.1    Ambiguities 

It is well known that there are intrinsic ambiguities in recovering structure from 
motion. The first kind of ambiguity, i.e. the scale ambiguity, states that the scale of 
the object or the absolute depth of the object can never be recovered. Secondly, if the 
camera has a small field of view, the optical flow caused by a small camera rotation is 
very similar to that caused by a small camera translation. Therefore, given an optical 
flow, there is a rotation/translation ambiguity. Thirdly, since the optical flow has its 
uncertainty, we will always have uncertainty in estimating other motion parameters 
such as rotation and translation around z axis though they are usually less significant. 
We also like to point out that there is no fundamental difference in terms of origin 
between the second and the third kinds of ambiguities other than their magnitudes 
for an ordinary camera. Historically the second kind of ambiguity was frequently 

singled out in literature. 
In our system, we assign an initial depth and uncertainty to the first frame. Prac- 

tically we assign a flat depth map and uniform independent uncertainty as a priori 
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depth information. It serves two purposes, which are disambiguation of the scale am- 
biguity by providing absolute depth, and allowing deformation of the a priori depth 
map to the true depth map by providing large independent uncertainty. 

Our system keeps six principal eigenimages to represent the correlated uncertainty 
as shown in Figure 5. Among these eigenimages, the first one usually represents the 
first kind of ambiguity, i.e. the scale ambiguity. The second and the third ones usually 
represent the second kind of ambiguity in two orthogonal directions. And the rest 
ones represent other minor ambiguities. 

Conceptually the independent uncertainty represents a chaotic uncertainty pat- 
tern, while the correlated uncertainty represents an organized uncertainty pattern. 
For example, if the eigenimage of a correlated uncertainty is uniformly bright, it rep- 
resents that the corresponding depth map can move back and forth. In other words, 
the depth values of all pixels have to change uniformly while the shape doesn't change 
at all. Since we set a priori depth uncertainty as totally chaotic, we will expect that 
as more optical flow information is incorporated, the uncertainty will become less and 
less chaotic, more and more organized. In our framework, that means that magnitude 
of the independent uncertainty will decrease while the magnitude of the correlated 
uncertainty could increase. 

Optical flow information doesn't provide anything which we could use to eliminate 
the scale ambiguity. Therefore we expect the eigenimage representing scale ambiguity 
in correlated uncertainty will have larger and larger eigenvalue. On the other hands, 
the second and third kinds of ambiguities are strong in some optical flows while 
weak in other ones. Thus the eigenimages representing these ambiguities can have 
increasing or decreasing eigenvalues depending on the optical flow sequence. 

Figure 7 shows one frame in a fifty-frame sequence. The motions of the camera 
with respect to the straw hat involve translations in (X, Y, Z) three directions and 
rotations around (X, Y) two axis from the 1st frame to the 30th frame. From the 
30th frame to the 40th frame, the motions are translations in Y direction and small 
rotations around X axis2. From the 40th frame to the 50th frame, the motions are 
translations in X direction and small rotations around Y axis. Figure 8 shows the 
first three eigenimages, and Figure 9 shows the evolutions of average independent 
uncertainty and the eigenvalues corresponding to the three eigenimages. Note that 
the eigenimages change from frame to frame. In the examples shown here, the eigen- 
images didn't change dramatically over the whole sequences, which simplifies the 
analysis of correlated uncertainties. First of all, the fact that the average indepen- 
dent uncertainty decreases monotonically and the first eigenvalue which represents 
the scale ambiguity increases monotonically indicates a steady improvement from a 
chaotic pattern to an organized pattern. Secondly, in the interval between the 30th 
and the 40th frame, there is an accumulating ambiguity of translation in Y direction 
versus rotation around X axis. This motion ambiguity mapping into structural uncer- 
tainty as generally increasing third eigenvalues. And because there is no ambiguity 
of translation in X direction versus rotation around Y axis, the second eigenvalue de- 

2X is the column direction, and Y is the row direction 
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Figure 7: One Frame in A Strawhat Sequence 
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Figure 8: Three Eigenimages For the Strawhat Sequence 

creases in the same time. For the similar reason, in the interval between the 40th and 
the 50th frame, the second eigenvalue increases while the third eigenvalue decreases 
for the extactly opposite reason. 

If the underlying camera motions or the optical flows of the whole sequence tend 
to be rather homogeneous, the system may never be able to resolve one or more 
ambiguities intrinsic to this type of optical flows. Under this case the correlated 
uncertainty eigenimages representing the second kinds of ambiguity may have an 
ever increasing eigenvalues, which represent lack of information to disambiguate. If 
we have active control over the camera, the eigenimages could then be used to plan 
the camera motion in order to resolve the ambiguities. 

Figure 10 (1) shows one frame of a road sequence which was shoot using a camera 
fixed on a moving vehicle. The motion of the camera with respect to the scene was 
very homogeneous. In fact all the optical flows are similar to the one in Figure 10 
(2). Figure 11 shows the first three eigenimages representing the correlated uncer- 
tainty. Figure 12 shows the average independent uncertainty and the eigenvalues 
corresponding to the three eigenimages. In this example, we can see that the ambigu- 
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Figure 9: Evolutions of Strawhat Uncertainties 
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Figure 10: A Road Sequence 

Figure 11: The First Three Eigenimages of the Road Sequence 

ity represented by the second eigenimage was never resolved. Comparing the optical 
flow in Figure 10, it is obvious that these optical flows provided little information 
to resolve the second kind of ambiguity in the flow direction, i.e. the direction from 
bottom-left to up-right, while they did provide enough information to resolve the sec- 
ond kind of ambiguity in the direction perpendicular to the flow direction. Secondly, 
unlike the previous example, the magnitude of the average independent uncertainty 
and the first eigenvalue were approaching constants. In other words, after about 20 
frames, the improvement from the chaotic uncertainty pattern to an organized uncer- 
tainty pattern seems stopped. The reason is that in this example, there is continuous 
appearing of new parts which were assigned chaotic uncertainties and disappearing 
of old parts whose uncertainties were organized. Therefore after certain number of 
frames, the improvement from chaotic to organized uncertainty pattern obtained in 
each new frame was totally cancelled by the introduction of new parts and lose of old 
parts. 
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Figure 12: Evolutions of Road Uncertainties 
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6.2.2    Experiments on Real Sequences 

We tested our system on many image sequences with different signal noise ratio and 
different field of view. No pre-processing was done on image sequences. Once we ob- 
tained a depth map sequence as output from our system, we masked out baskground 
areas since the depth information in these areas is arbitrary. The separation of fore- 
ground and background was done by a simple thresholding and hole-filling. 

The first sequence includes fifty-one-frame images of a straw hat as we showed in 
the previous section The images were digitized by a matrox board. The rotations 
and translations of the camera with respect to the straw hat were discontinuous. 
The camera had about an 11° field of view. The optical flow and its uncertainty 
were computed using hyper-geometric filters [21, 22]. Figure 13 shows the intensity 
images and depth maps computed after the corresponding frames. It clearly shows 
the converging shape resulting from recursively combining information from multiple 

frames. 
The Chair Sequence: The camera had an 22° field of view. The object was a real 

chair we used in our lab. The chair was rotating in front of the static camera as in 
Figure 14. Digitization was done by matrox board. The optical flow computation 
sometimes returned wrong results at some locations, which we believe were caused 
by texture aliasing. We can see that even in the tenth frame, the two buttons are 
very clear in the depth map. Also noticeable is that part of the chair in the left side 
is moving out and part of the chair in the right side is moving in. The move-in part 
is at first pretty noisy, and then gradually becomes smoother and smoother. 

The Cube Sequence: The camera had about a 22° field of view. The sequence in 
Figure 15 was taken by a hand-held video camera connected to a Umatic recorder. 
It was recorded on a Umatic SP videotape and then digitized by a BVU digitizer, 
which could only capture one field in a frame. The digitized images have significantly 
higher noise levels than those digitized by matrox board. We can see that the system 
still performs pretty well on those noisy images. 

The Basket Sequence: The camera had a 22° field of view. The target was a basket 
which moving and rotating in front of the camera. The digitization was done the same 
way as the cube sequence. 

The Sphere and Dog Sequence: The camera had an 11° field of view. The target 
was a toy dog on top of a ball. The difficulties of this sequence are that (1) the ball 
had a very low contrast near its boundaries; (2) it had obvious specular reflections 
which will confuse the optical flow algorithm, and (3) the toy dog had a sparse texture. 
Despite these difficulties, our system still performs reasonably well as in Figure 17. 
The shape of the sphere and dog are both visible, and even the depth of the tail tip 
of the dog is correctly shown. 

In all the experiments, the initial structure information was set as a flat surface 
parallel to the image plane at depth 200 with independent uncertainty a = 100 at 
every pixel. Despite such a crude initial estimation, there was no trouble caused by 

nonlinearity in our experiments. 
From all these experiments, we conclude that our system of recursively recovering 
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10th Frame Depth Map After 10th Frame 

50th Frame Depth Map After 50th Frame 

Figure 13: The Straw Hat Sequence 
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Second Frame Depth Map After 2nd Frame 

10th Frame Depth Map After 10th Frame 
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Figure 14: The Chair Sequence 
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Second Frame 

10th Frame 

Depth Map After 2nd Frame 

Depth Map After 10th Frame 

50th Frame Depth Map After 50th Frame 

Figure 15: The Cube Sequence 
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90th Frame Depth Map After 90th Frame 

Figure 16: The Basket Sequence 
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Second Frame 

10th Frame 

Depth Map After 2nd Frame 

Depth Map After 10th Frame 

50th Frame Depth Map After 50th Frame 

Figure 17: The Sphere and Dog Sequence 
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dense structure from a dense optical flow sequence can converge to the true 3D shape 
of the scene quickly and accurately. We have demonstrated its performance under 
adverse conditions such as noisy images, specularity, and texture aliasing. Even under 
these conditions, the system performed robustly. 

7    Summary 

In summary, we presented an EKF-based system which recursively combine dense 
structural information from a sequence of optical flows. At current stage, our system 
is able to deliver an evolving sequence of depth maps using optical flows. We also 
showed that the system was very robust when the optical flows were noisy or contain 
outliers caused by texture aliasing and specularity. 

Current representation of 3D dense information by depth maps and their uncer- 
tainty is very limiting in that complicated objects can not be represented. In the 
future, we would like to expand our system to deliver a final 3D model of the scene 
based on the image sequence. In other words, we would like to maintain an indepen- 
dent module to store, retrieve and update 3D structural information. Therefore we 
could extract a priori depth information from the module for every optical flow frame, 
and merge posteriori depth information into the module. The problem of representing 
3D dense structure and its uncertainty (independent and correlated) still remains to 
be very challenging. 
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A    Sherman-Morrison-Woodbury Inversion 

Given a full-rank nxn matrix C, and its perturbed by ä rank m matrix UVT, where 
U and V are both n x m matrices, the Sherman-Morrison-Woodbury formula [9] 

(page 225) states that 

(C + UV7)"1 = C-1 - 0-^(1™ + VrC-1U)-1VTC"1, (53) 

where Im is the m X m unit matrix. The validity of this inverse can be easily verified 

by multiplying both sides by (C + UV ). 
In a more concise format, we can write the above equation as 

(C + UV7)"1 = d + UiVf, (54) 

where 

d   =   C-\ (55) 

Ux   =   -C-1U(Im+VTC-1U)-1, (56) 

Vx   =   C-TV. (57) 

In our application, because C is a diagonal matrix, we can compute its inverse d 
accurately. Therefore the only source of numerical error is A = (Im + VTC~1U)-1. 

Suppose the error is 
E = Im-(Im+VrC-1U)A, (58) 

the final error is 

(C + UVr)(d + UxVf) - I = UEVTC"1. (59) 

Eq. 59 shows that there is a potential danger that the error E could be magnified 
in the final error.   That is the source of fragility of Sherman-Morrison-Woodbury 
formula. In our system, we reduce that risk by computing A is in double precision 
and limiting the magnification factor (roughly the ratio between eigenvalues of UV 
and those of C) to be less than 104 as we did in Section 6. 
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B    Eigen Analysis of Symmetric Outer Products 

In this section, we consider eigen analysis and singular value decomposition of a 
special kind of matrices, i.e. symmetric outer products of two low-rank matrices. 
Because those matrices are symmetric, the problem of computing eigenvalues and 
eigenvectors is identical to the problem of singular value decomposition because 
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where U and V are both nxm (n » m) matrices, A;,i = 1,2, • 
and e,-, i = 1,2, • • •, m are normalized eigenvectors. 

■, m are eigenvalues, 

, m are eigenvalues Theorem B.l Suppose A?,z = l,2,---,m and e°{,i = 1,2, 
and normalized eigenvectors of the m x m matrix VTU, we have the eigenvalues and 

eigenvectors of n x n matrix UV    as 
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(62) 

where II Ue? II is the norm. 

The proof of the above theorem is straightforward. Since A° and e^ are an eigen- 
value and eigenvector of VrU, we have 

V^Ue"? = A?c?. 

Multiplying both sides by U, we obtain 

(UVr)Ue-? = A?Ue?. 

(63) 

(64) 

Thus we have the eigenvalue and eigenvector of UVT as A° and Ue?. 
Additionally, if the outer product UVT is also positive semi-definite, which is true 

if it represents covariance, we can rewrite it as 

(65) 
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